Hot and Warm Forming of Selected Sheet Materials

April 17, 2013

Hyunok Kim, Technical Director
Ron Brown, Director
EWI Forming Center

Eren Billur, Grad. Research Associate
Taylan Altan, Director & Professor
OSU-CPF
Hot forming is becoming more common to produce net-shape structural components of aerospace, automotive, heavy manufacturing and defense applications.

Warm forming of aluminum 5xxx-7xxx recently gains more interests for automotive and aerospace applications.

The driving factors are light weighting and excellent structural performance.

Industry looks for:
- practical knowledge of tooling design and production technology
- scientific knowledge of reliable material models that can help to predict the forming limit and the failures of the part
- innovative solutions to reduce the manufacturing cost
EWI recently conducted several industry-sponsored projects related to hot forming various materials in aerospace, automotive and heavy manufacturing structures applications.

OSU-CPF has been conducting multiple projects in process simulations on both hot forming AHSS and warm forming of aluminum alloys.

EWI and OSU-CPF have been collaborating to develop proposals to government agencies (DoE, State of Ohio and DoD) on a hot forming topic.

Networking with more than 18 organizations on hot forming.
Research Goal

Develop process knowledge on:

- **Forming** the materials at elevated temperatures (formability of Manganese-Boron steel, TWB & TRB, Al, Ti and Nickel alloys)
- **Welding** the hot / warm formed part (for weld failure analysis)
- **Evaluating** the performance of hot-formed and welded structures using quasi-static and dynamic destructive testing

Example hot forming test [Courtesy of POSCO]

Fatigue crack on a GMAW between DP780 and 22MnB5 [Koganti 2007]

Bend test of PHS part at EWI

Example of dynamic crush testing of TWB
Available Resources for Hot/Warm Forming Research

- GRESS Electric furnace available (28” x 16” x 8” size heating chamber up to 2250 °F)
- Various welding equipment
- Only Forming Test Tooling is required.

Electric furnace

Hot forming process modeling

160-Ton hydraulic press

Destructive testing equipment
Recommended Scope of Work

- **Task 1 – State of the Art (SOA) review**
 - The SOA review on hot stamping for automotive applications was conducted by OSU-CPF
 - The SOA review on warm forming aluminum and other materials will be conducted in this project

- **Task 2 - Characterization of material properties**
 - Tensile tests at elevated temperatures with the controlled cooling rates will be conducted
 - The material constitutive model will be determined

- **Task 3 – Design and manufacturing the test tooling**
 - Tooling design with FEM simulations and manufacturing
Recommended Scope of Work

- **Task 4 – Hot / warm forming tests**
 - Testing at a 160-TON hydraulic press

- **Task 5 – Welding test / fabricating the part**
 - Resistance, laser and arc welding of the hot / warm formed part

- **Task 6 – Destructive testing with the fabricated part**
 - Quasi-static bend and dynamic (up to 19-mph) crash tests
Deliverables & Performance Period

- **Deliverables:**
 - Reporting (monthly basis, at the end of each task and a final)
 - Material properties, Tooling design
 - Process modeling results
 - Experimental data of hot / warm forming and welding
 - Destructive test results

- **Performance period: 12 months**

- **The final project scope including budget and materials will be determined with the inputs of industry partners.**

If you want to know more about the detailed project plan of the project topic, please free to contact Hyunok Kim (*hkim@ewi.org* / 614.688.5239).
Questions & Contact

Hyunok Kim, Ph.D.
Technical Director
EWI Forming Center
http://ewi.org/ewi-forming-center