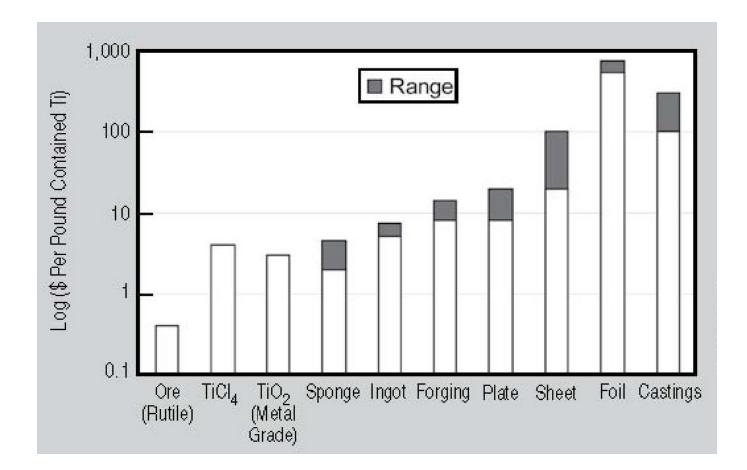
<u>ADDITIVE MANUFACTURING OF</u> <u>TITANIUM ALLOYS</u>

F.H. (Sam) Froes Consultant to the Titanium Industry

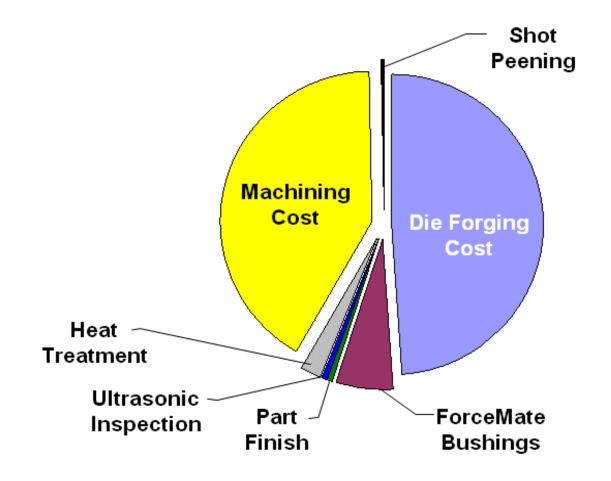
Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23

<u>OUTLINE</u>

- Cost of Titanium Components
- Cost Breakdown of Titanium Components
- Overview of Additive Manufacturing (AM)
- Part Building Technology
- Comparisons of Technologies
- Titanium Applications
- Remanufacturing
- Microstructure and Mechanical Properties
- Economics of (AM)
- Developing Techniques
- Conclusions

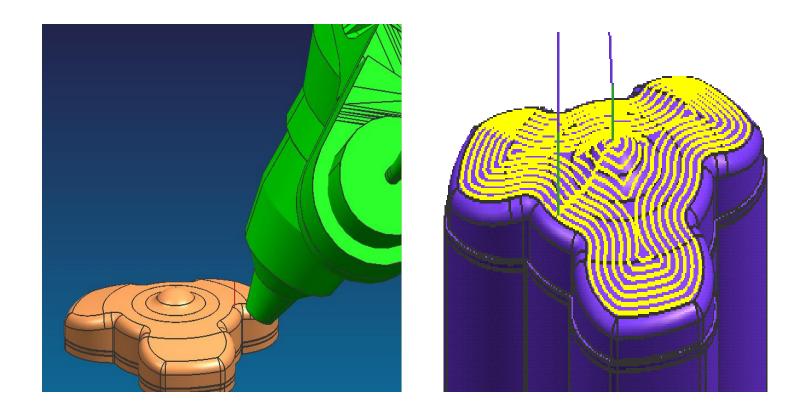

Cost of Titanium/ Comparisons

Item	Material (\$/pound)		
	Steel	Aluminum	Titanuim
	0.02	0.01	0.22 (rutile)
Metal	0.10	1.10	5.44
Ingot	0.15	1.15	9.07
Sheet	0.30-0.60	1.00-5.00	15.00-50.00


Metal Consumption

Structural Metals	Consumption/year (10 ³ metric tons)
Ti	50
Steel	700,000
Stainless steel	13,000
Al	25,000

<u>Cost of titanium at various stages of a</u> <u>component fabrication.</u>



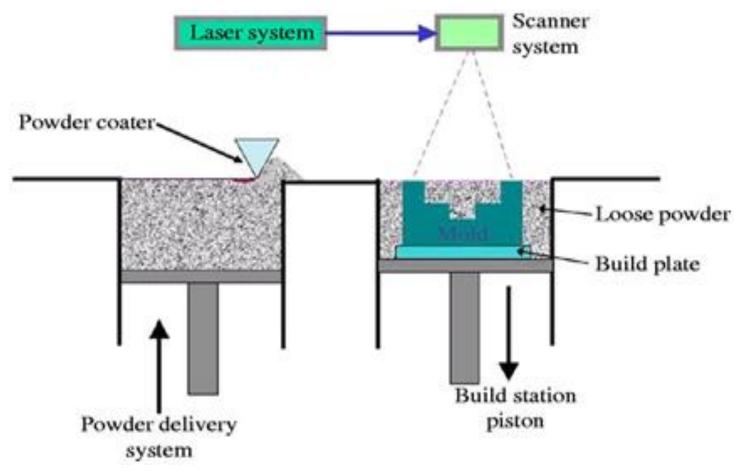
Boeing 787 side-of –body chord, manufacturing cost breakdown (courtesy Boeing).

Left: CAD model of the part and process head.

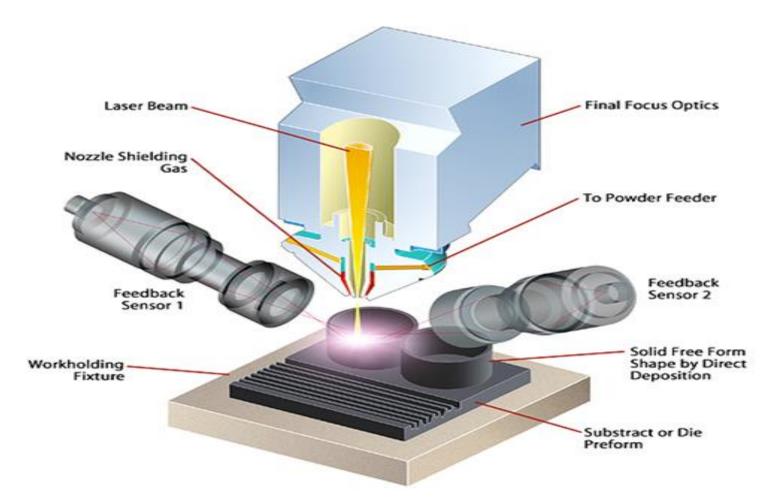
<u>Right: Simulated toolpath for 5-axis deposition using</u> <u>DMDCAM software. Courtesy: DM3D Technology.</u>

Part Building Technology

- Direct Energy Deposition (DED)
 - Large Build Envelopes
 - Add (Different) Material


- Powder Bed Fusion (PBF)
 - Complex Features
 - Hollow Cooling Passages

Heat Source Atmospheres


- Laser
 - Inert

- Electron Beam
 - Vacuum

AM Category	Technology	Company	Description
Directed Energy Deposition	Direct Metal Deposition (DMD)	DM3D Technology LLC (formerly POM Group)	Laser and metal powder used for melting and depositing with a patented closed loop process.
(DED)	Laser Engineered Net Shaping (LENS) Direct Manufacturing	Optomec Inc. Sciaky Inc.	Laser and metal powder used for melting and depositing. Electron beam and metal wire
	(DM)		used for melting and depositing.
Powder Bed Fusion (PBF)	Selective Laser Sintering (SLS) Direct Metal Laser Sintering (DMLS)	3D Systems Corp. (acquired Phoenix Systems) EOS GmbH	Laser and metal powder used for sintering and bonding. Laser and metal powder used for sintering, melting, and bonding.
	Laser Melting (LM)	Renishaw Inc.	Laser and metal powder used for melting and bonding.
	Laser Melting (SLM)	SLM Solutions GmbH	Laser and metal powder used for melting and bonding.
	LaserCUSING	Concept Laser GmbH	Laser and metal powder used for melting and bonding.
	Electron Beam Melting (EBM)	Arcam AB	Electron beam and metal powder used for melting and bonding.

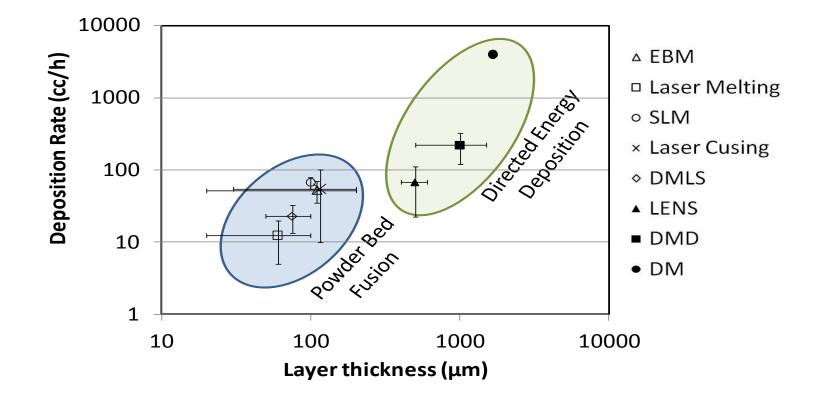
Schematic showing powder bed fusion technology.

Schematic showing Direct Metal Deposition (DMD) technology

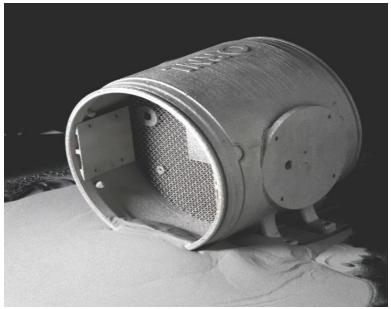
Comparison of Various Technologies

Item	Laser based PBF (Ex: DMLS)	Electron beam based PBF (Ex: EBM)	Laser based Directed Energy Deposition (Ex: DMD)
Build envelop	Limited	Limited	Large & flexible
Beam size	Small, 0.1-0.5 mm	Small, 0.2-1 mm	Large, can vary from 2-4 mm
Layer thickness	Small, 50-100 μm	Small, 100 µm	Large, 500-1000 µm
Build rate	Low, cc/h	Low, 55-80 cc/h	High, 16-320 cc/h
Surface finish	Very good, Ra 9/12 μm, Rz 35/40 μm	Good, Ra 25/35 μm	Coarse, Ra 20-50 µm, Rz 150-300 µm, Depends on beam size
Residual stress	High	Minimal	High

Comparison of Various Technologies


Cont'd

Heat treatment	Stress relieve required,	Stress relieve not	Stress relieve required,
	HIP'ing preferred	required, HIP'ing may/	HIP'ing preferred
		may not be performed	
Chemistry	ELI grade possible, negligible	ELI grade possible, loss of	ELI grade possible,
	loss of elements	Al need to be compensated	negligible loss of elements
		in powder chemistry	
Build capability	Complex geometry possible	Complex geometry	Relatively simpler
	with very high resolution.	possible with good	geometry with less
	Capable of building hollow	resolution. Capable of	resolution. Limited
	channels.	building hollow channels.	capability for hollow
			channels etc.
Repair/Remanufac	Possible only in limited	Not possible	Possible (capable of adding
ture	applications (requires		metal on 3D surfaces under
	horizontal plane to begin		5+1-axis configuration
	remanufacturing)		making repair solutions
			attractive)
Feature/metal	Not possible	Not possible	Possible.
addition on			Depending on dimensions
existing parts			ID cladding is also possible
Multi-material	Not possible	Not possible	Possible
build or hard			
coating			


Comparison of Techniques

- PBF
 - Better Surface Finish
 - Slower Deposition
- DED
 - Rougher Surface
 - Higher Build Rate

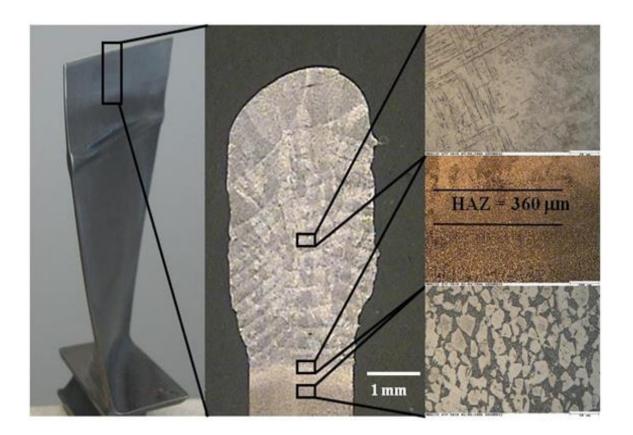
<u>Comparison of PBF and DED Technologies in</u> <u>terms of layer thickness and deposition rate</u>

<u>Hydraulic manifold built using EBM</u> <u>technology (Courtesy ONRL)</u>

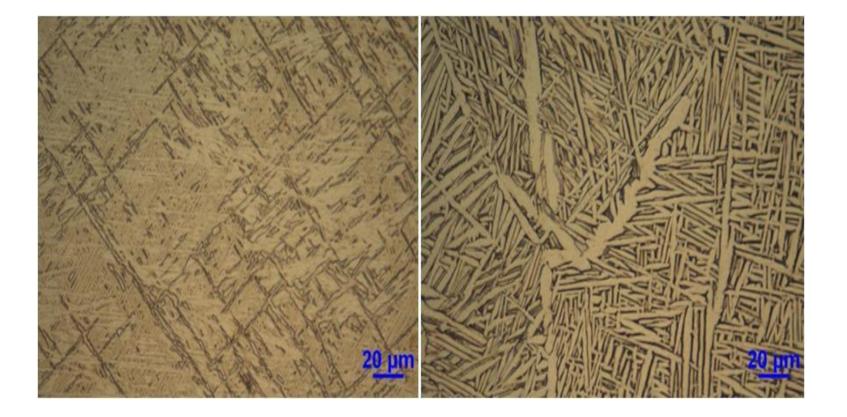
- PBF Allows
 - Complex Part
 - Good Surface Finish
 - Reduced Machining

<u>Medical implant application using DMLS</u> <u>technology (courtesy: Jim Sears)</u>

(Left- Biomedical implant/ Right- Tibial knee stem



Fan case produced by adding features with AM (laser aided directed energy deposition) to a forged perform. (courtesy: Jim Sears)

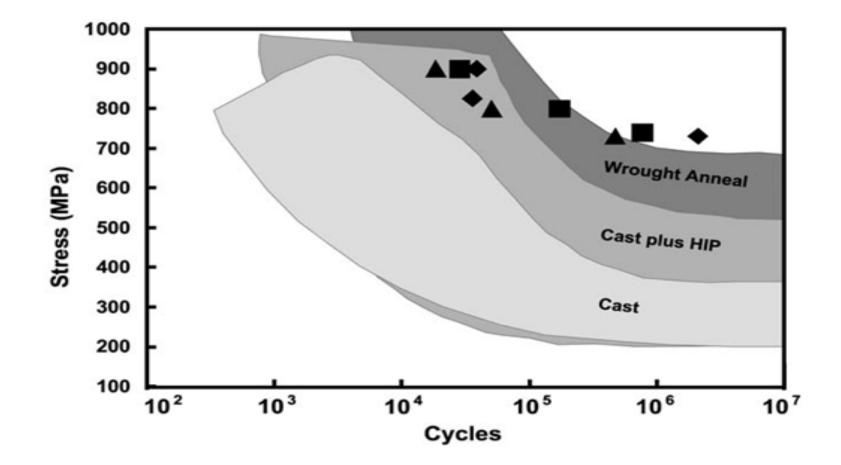


- DED
 - Part Repair

DMD Repair of turbine components; left: repaired vane, middle: macro crosssection, and right: microstructures (top to bottom shows the clad, interface and base material). (courtesy: DM3D Technology).

<u>Microstructure of DMD built Ti6Al4V before and</u> <u>after HIP'ing (courtesy: DM3D Technology).</u>

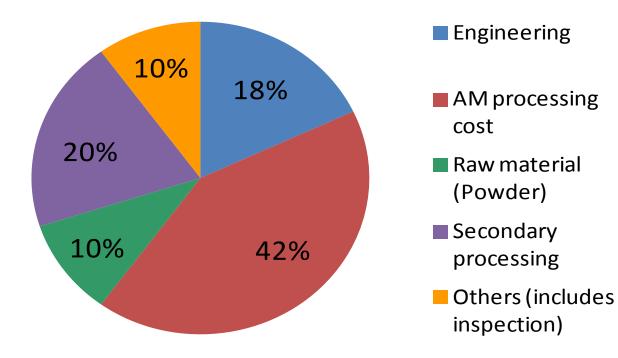
Mechanical Properties


- Similar or Better Than Cast and Wrought
 - Tensile
 - S-N Fatigue

<u>Tensile strength, yield strength and elongation of Ti-6Al-4V alloy</u> <u>built using various AM processes. DMD-Direct Metal Deposition,</u> <u>LENS-Laser Engineered Net Shaping, DMLS-Direct Metal Laser</u> <u>sintering, EB-Electron Beam Melting, HIP-Hot Isostatic pressing,</u>

HT-Heat treatment.

<u>Comparison of Room Temperature fatigue properties of AM</u> <u>fabricated Ti-6Al-4V and conventionally fabricated Ti-6Al-4V.</u> ■, <u>and ▲ represent properties in the 3 orthogonal directions, x, y</u> <u>and z respectively. (courtesy: EADS/Jim Sears).</u>



<u>Economics</u>

• AM is good for small throughput

 AM is not as attractive for high volume manufacturing

<u>Typical cost breakdown of various</u> <u>steps involved in AM of Titanium</u>

Seat buckle produced using DMLS technology.

- PBF Used
 - Lower weight by 55%
 - Lower cost manufacturing and cost of ownership (Fuel)

Titanium Powder Metallurgy

MA QIAN F. H. FROES

BALD bracket for Joint Strike Fighter (JSF) built using EBM technology (courtesy: ORNL, TN)

- Reduce buy-To-Fly Ratio (1:1, compared to 33:1)
- Savings of 50%

<u>Advances</u>

 Addition of Different Material Surfaces (E.G. Rene 88 on Ti-6Al-4V)

Conclusions

- Additive Manufacturing is Here
 - Monolithic complex parts and Bi-material components
 - Creative design
 - Adding features
 - Damage repair
 - Cost saving possible
- Mechanical Properties as Good as Ingot Metallurgy Parts