Weld Repair of Manganese Frogs for Enhanced Safety in Shared Service

Marc A. Purslow Applications Engineer mpurslow@ewi.org 614.688.5150

Background: Overview

60 50

20 10

15 40 30

- Austenitic manganese steel (AMS)
 - Highly work-hardenable
 - Resistant to wear
 - High toughness
- Shortest-lived track segments

- Low interpass temperature requirement limits productivity
- Often repairs cannot be properly completed, causing further damage

AREMA 2014

AMS Diamond

Repair Interval

Background: Welding AMS

- Temperature of base material must be kept low to retain mechanical properties
- AWS D15.2 specifies a temperature 1 in. (25 mm) from weld of 500°F (260°C)
- Significant variation with manual/semi-automatic processes
- Special welding techniques
 - limit overheating
 - eliminate cracking
 - limit productivity

Annual Conference & Exposition

Background: Breakouts

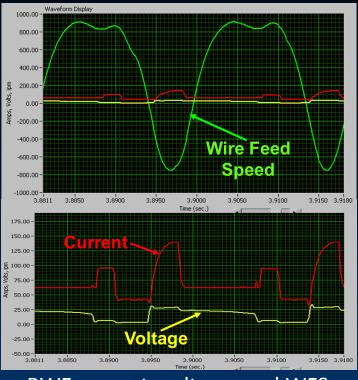
- Most repairs are of "breakouts"
- Frog casting plastically deforms before fully work-hardening
- Fractures initiate in damaged material
- Broken off when "flowed" material comes in contact with the wheels

Maintenance grinding is critical

Frog Type	1st grinding	2nd grinding	3rd grinding	Steady-state grinding interval
Pre-hardened AMS frog	5 MGT	20 MGT	-	20 MGT
Weld repaired AMS frog	1 day	1 week	1 month	20 MGT

AREMA 2014

Slide 4


Annual Conference & Exposition

September 28 - October 1

CHICAGO

Background: Proposed Processes

- Automated FCAW
 - Higher travel speeds + wire feed speeds = higher productivity
 - More consistent than manual/ semi-automatic welding
- Reciprocating Wire Feed (RWF)
- Wire Motion Synchronized with Current Waveform
 - Minimal spatter
- Low voltage/heat input
 AREMA 2014

RWF current, voltage, and WFS
Annual Conference & Exposition
CHICAGO September 28 - October 1

Objective

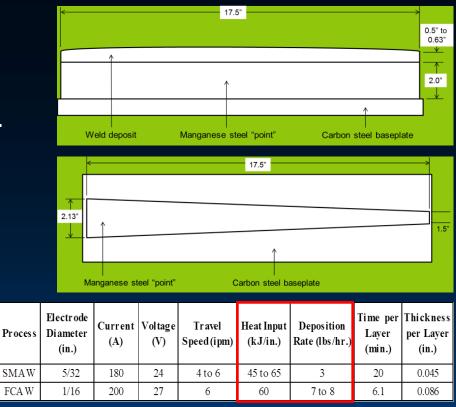
- Determine whether automating FCAW process variations can:
 - Improve weld quality
 - Provide quality control
 - Improve productivity
 - Increase repair life
 - Improve ride quality

AREMA 2014

Approach

- Using #20 frog point "mock-ups"
 - Evaluate current industry repair techniques
 - Evaluate Automated FCAW and RWF FCAW
- Evaluate with mechanical and radiographic testing (RT)
- Select a single automated process
- Develop welding sequence on AMS frog
- Repair 2 AMS frogs
- Evaluate repaired frogs at TTCI

AREMA 2014


Annual Conference & Exposition

Baseline Welding

- Per AWS D15.2, Handbooks
- Short-circuiting transfer mode
- 35 to 50°(push) travel angle
- Bead width and length 5/8- and 5-in.
- Bead sequencing
 - Point to heel

AREMA 2014

- Stagger craters
- Avoid side-by-side beads
- Fill craters by reversing direction
- Peen all but first and last layers
- Maximum temperature of 500° to 600°F measured 1 in. from weld

Annual Conference & Exposition

September 28 - October 1

CHICAGO

Slide 8

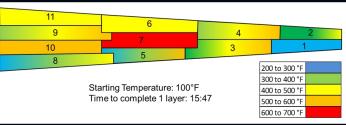
RT/Visual Inspection of Baseline Welds

• SMAW

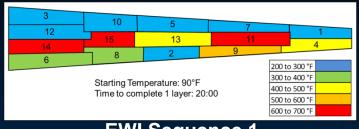
AREMA 2014

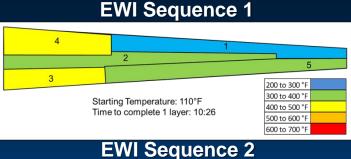
- Heat input: 60 kJ/in.
 RT: Scattered porosity throughout
 Cross section: 2 vertical cracks
- Semi-automatic FCAW

 Heat input: 45 to 65 kJ/in.
 RT: Scattered porosity
 Improved quality over SMAW



Interpass Temperature Trials


SMAW


AREMA 2014

- #20 Point mock-ups
- No delay between passes
- Industry recommended vs. two EWI sequences
- Staggered long weld beads resulted in lower heat and cycle time

Industry Recommended

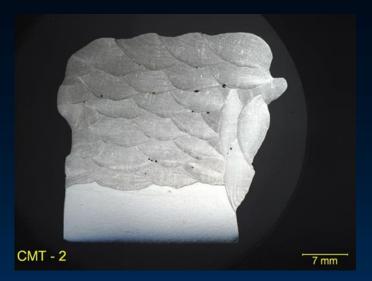
Annual Conference & Exposition

Automated FCAW Trials

- Solid Electrodes Not Commercially Available
 - Self-shielded FCAW Electrode
 - 75% Argon/25% CO₂ Shielding Gas
- Two Parameter Sets

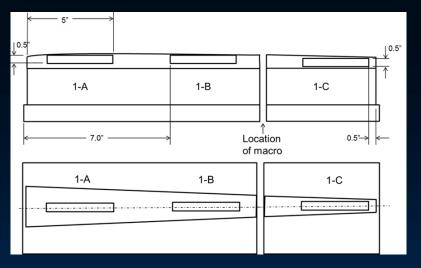
AREMA 2014

- Corner Parameters
 - TS: 15 ipm, A: 140, V: 21
 - · Heat Input: 12 kJ/in.
 - Corner beads without drooping
- High-deposition Parameters
 - TS: 15 ipm, A: 200, V: 28
 - Heat Input: 23.5 kJ/in.


Annual Conference & Exposition

Reciprocating Wire Feed Trials

- Solid Electrodes Not Available
 - Self-shielded FCAW Electrode
 - 75% Argon/25% CO₂ Shielding Gas
- Two Parameter Sets Developed
 - Corner parameters

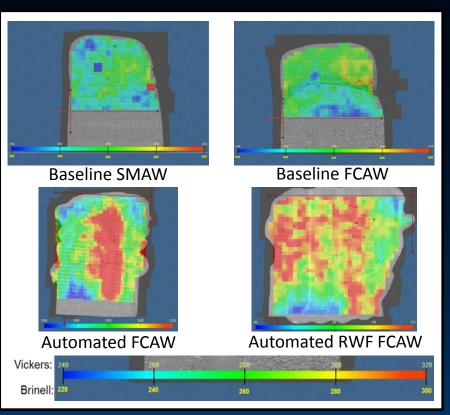

AREMA 2014

- Travel Speed: 24 ipm, A: 150, V: 17.5
- Heat Input: 7 kJ/in.
- Corner beads without drooping
- High-deposition Parameters
 - Travel Speed: 13 ipm, A: 195, V: 18.5
 - Heat Input: 15.7 kJ/in.
 - Weave added to promote wetting/tie-in

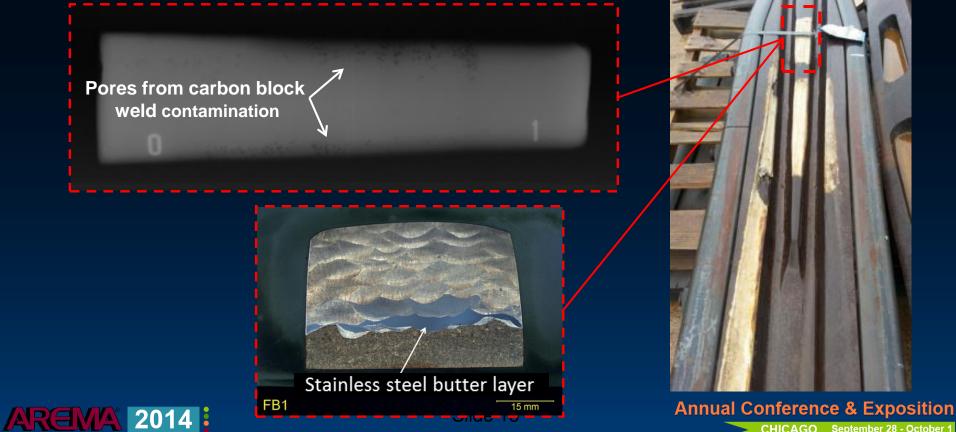
Tensile Testing of Mock-up Welds

- All YS higher than D15.2 baseline
- All UTS except SA FCAW higher than D15.2 baseline

Property	Typical Casting Properties	Mock-up Material	Baseline SMAW	Baseline SA FCAW	FCAW-A	RWF FCAW
Tensile Strength (ksi)	100 to 145	142	117	96	125	121
Yield Strength (ksi)	50 to 57	59	83	74	83	86


AREMA 2014

Hardness


 Higher hardness in automated mock-ups

AREMA 2014

- May be related to internal heat build-up
 - Less wait time required between passes/layers

Evaluation of Damaged Frog Section

September 28 - October 1 CHICAGO

Partial Frog Repair

- Automated FCAW selected for all subsequent trials
- Previously repaired material removed w/CAG and grinding
- Low and High HI parameters used

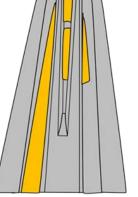
AREMA 2014

Slide 16

Partial Frog Repair Test Results

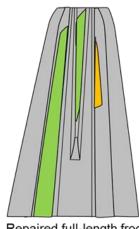
Property	Typical Casting Properties	Mock-up Material		Baseline SA FCAW	FCAW-A	RWF- FCAW	FCAW-A on Partial Frog (point)	FCAW-A on Partial Frog (wing)
Tensile Strength (ksi)	100 to 145	142	117	96	125	121	112.1	109.5
Yield Strength (ksi)	50 to 57	59	83	74	83	86	73.7	74.7

Location	Test Temp. (°F)	Absorbed Energy (J)	Absorbed Energy (ft-lbs)	Lateral Expansion (mm)	Lateral Expansion (mils)	Shear (%)
Point	-30.28	40.67	30	0.6	23.62	100
Point	-30.28	43.39	32	0.68	26.77	100
Point	-30.28	44.74	33	0.44	17.32	100
Wing	73.4	84.06	62	1.25	49.21	100
Wing	73.4	115.24	85	1.41	55.51	100
Wing	73.4	90.84	67	1.34	52.76	100


AREMA 2014

Slide 17

Annual Conference & Exposition

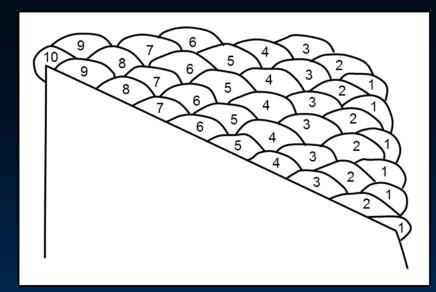

Full-sized Frog Preparation

Photograph of partial frog as-received

Partial frog sections in need of repair in orange

Repaired partial frog sections in green

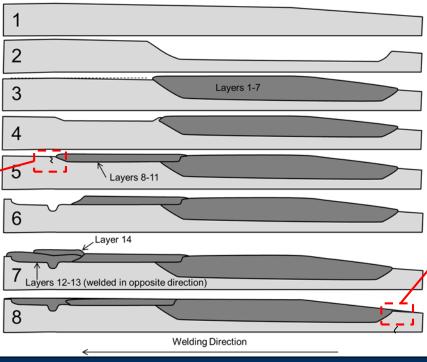
Repaired full-length frog sections in green



AREMA 2014

Slide 18

Frog #1 Welding


- Sequence Developed on Partial Frog
- Conformal Frog
 - More prone to cracking defects during weld repairs
 - Crack at heel repaired at EWI
 - Crack in point found after finish-grinding at TTCI
 - Future testing TBD

Wing bead sequence

Frog #1 Welding

Point Crack (TTCI)

Heel Crack (EWI)

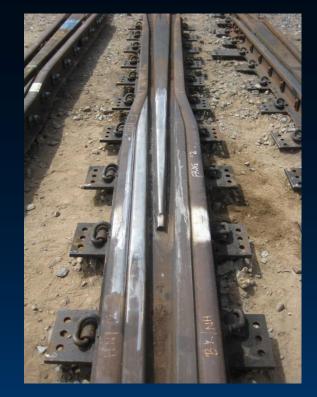
Point Welding Sequence

AREMA 2014

Slide 20

Frog #1 Heel Crack Repair

AREMA 2014



Frog #2 Welding

- Sequence Developed on Partial Frog
- Flat Frog

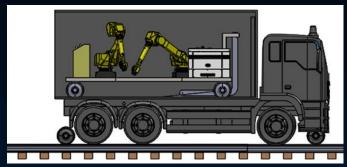
AREMA 2014

- Less prone to cracking defects during weld repairs
- No cracks found during welding or finish grinding
- Currently in TTCI's Test Track

Frog #2 Welding

Step 4: Grinding preparation for taper-fill layer

Step 5: Welding of taper-fill layer

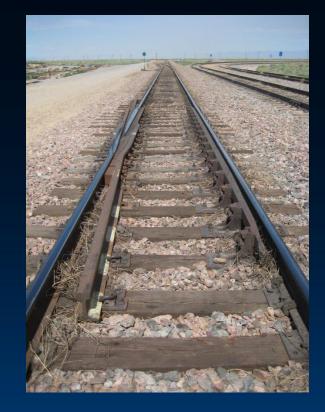



AREMA 2014

Slide 23

Automation Concept

- Retractable cart
- 6-axis arc welding robot
- 6-axis water-jet cutting robot
- Need for adaptive fill TBD
 Would require vision system



Frog #2 Testing Results

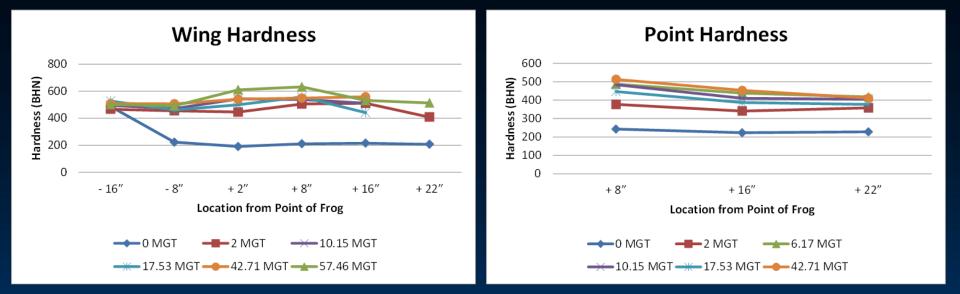
- Placed in open track in hightonnage loop (HTL) at Facility for Accelerated Service Testing (FAST)
 - 100-car train

AREMA 2014

- 315,000 pound cars
- 40 miles per hour

Frog #2 Testing Results

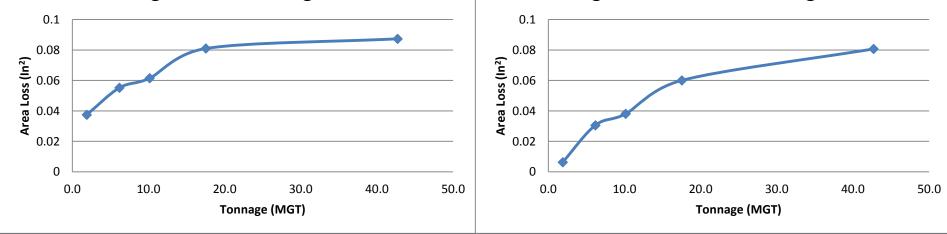
- 78.18 MGTs to date
- Maintenance grinding at 10.15 MGTs
 - Bulge in gage face of wing
 - "Flow" length of point
 - HAZ dip in wing


AREMA 2014

- Maintenance grinding at 17.53 MGTs
 - Gage corners of wing and point
- No visible surface defects or major metal flow
- No additional maintenance grinding has been required

Frog #2 Testing Results: Hardness Data

AREMA 2014


Slide 27

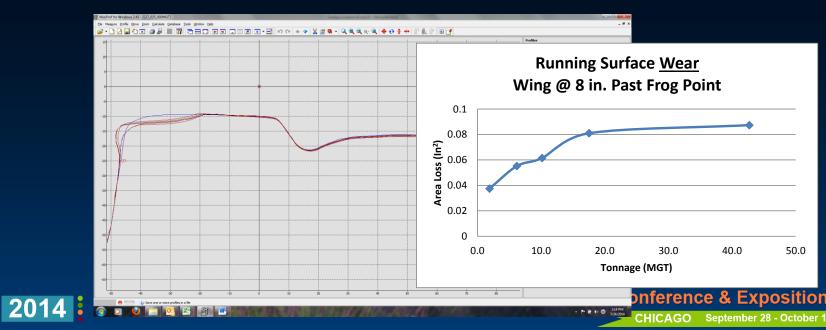
Frog #2 Testing Results: Running Surface Wear

Running Surface <u>Wear</u> Wing @ 8 in. Past Frog Point

ARGMA 2014

Running Surface <u>Wear</u> Frog Point @ 32 in. Past Frog Point

Annual Conference & Exposition


September 28 - October 1

CHICAGO

Frog #2 Testing Results

- Running surface height loss is relatively uniform
- Deformation rates have stabilized well before maintenance limits are reached

AREMA

Conclusions

- Automated FCAW can be successfully applied to AMS frogs for:
 - Improved productivity
 - Increased weld quality
 - Lower interpass temperatures
- RWF FCAW
 - Further reduces heat input
 - Equipment is more complex

AREMA 2014

Annual Conference & Exposition

Conclusions

- Conformal frog required specialized welding techniques to mitigate cracking at interface between the weld repaired area and workhardened base material.
- In-track testing to date suggests the performance of frogs repaired with automated FCAW is better than those repaired with existing methods.

Annual Conference & Exposition

Acknowledgements

- Work was sponsored by the Federal Railroad Administration of the U.S. Department of Transportation under Contract No. DTFR53-13-C-00037.
- Authors gratefully acknowledge the support and cooperation of Transportation Technology Center, Inc.
- Authors also gratefully acknowledge the support and guidance of CSX Corporation.

Annual Conference & Exposition

References

- 1) Davis, D., Sun, J., Terrill, V., Hansen, B., "Industry Survey of Frog Weld Repair Best Practices," Association of American Railroads Research and Test Department Technology Digest, 1997.
- Subramanyam, D. K., Swansiger, A. E., Avery, H. S., "Austenitic AMSs," ASM Handbook Volume 1, Properties and Selection: Irons, Steels, and High-Performance Alloys, pp. 822-840, 1990.
- 3) Handbook for Track Welders: MW&S Standard Procedure for Welding Repairs to Rail and Track Fixtures and Grinding," Norfolk Southern Corporation, December 1992.
- 4) "How to Repair AMS Castings," Abex Corporation Amsco Division, Bulletin WB-873.

AREMA 2014

References

- 5) Instructions Governing the Inspection, Welding, Grinding and Heat Treatment of Track Components," Union Pacific Railroad Company Engineering Services, November, 1990.
- 6) "Recommended Practices for the Welding of Rails and Rail Related Components for Use By Rail Vehicles," American Welding Society AWS D15.2, pp. 21-23, 2003.
- 7) "Welding Alloys for Railroad Track Maintenance," McKay Technical Report.

Annual Conference & Exposition